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Perturbations to BCS
We now consider what happens when a superconductor is probed by some
means. These probes will be treated as perturbations to the basic pairing Hamil-
tonian.

0.1 BCS Density of States
When the energy gap opens up, it pushes states away from the chemical poten-
tial, resulting in a singular density of states at the gap edge.
The density of states (DOS) is the rate at which new states are added as the
energy increases. For the normal state this is DN (ξ) = dN

dξ , while for the super-
conducting state it is DS(E) = dN

dEs
. Taking the ratio yields,

DS(E)
DN (E) = dξ

dEs
.

Writing ξ =
√
E2
s −∆2 yields,

DS(E)
DN (E) =

{
0 E < ∆
E√

E2−∆2
E > ∆

The singularity at the gap edge E = ∆ has important consequences for the
physical properties of superconductors.

0.2 Some Properties of the γ Operators
The γ operators introduced last time were written as,
γ+
k0 = u∗kc

+
k,↑ − v∗kc−k,↓ and,

γ+
k1 = u∗kc

+
−k,↓ + v∗kck,↑.

Now look at the effect of γk0 on the BCS ground state. It yields,
γk0 |ΨBCS〉 = 0, showing that |ΨBCS〉 is the vacuum state for the excitations
created by the γ opertors.

Acting with γ+
k0 |ΨBCS〉 creates a quasiparticle with momentum k and spin

up with probability 1. It also guarantees that the state −k and spin down is un-
occupied with probability 1, hence that Cooper pairing state is excluded from
the wavefunction.
γ+
k0 |ΨBCS〉 =

(
u2
k + v2

k

)
c+k,↑

∏
l 6=k

(
ul + vlc

+
l,↑c

+
−l,↓

)
|0〉

1



= c+k,↑
∏
l 6=k

(
ul + vlc

+
l,↑c

+
−l,↓

)
|0〉.

The γ+ operators do not conserve particle number. We found that the
change in particle number upon acting with γ+ is u2

k − v2
k which varies from a

value of −1 (hole-like) deep inside the Fermi surface to a value of +1 (particle-
like) outside the Fermi surface. In general, the excitation created is a coherent
superposition of hole and particle.

0.3 The Perturbing Hamiltonian
The general perturbation will have the form, Hpert =

∑
kσ,k′σ′ Bk′σ′,kσc

∗
k′σ′ck,σ.

This Hamiltonian scatters an electron from state k, σ to state k′σ′ with ampli-
tude Bk′σ′,kσ.

Examples include attenuation of longitudinal ultrasound (ultrasonic attenu-
ation):
Hua
pert = λqu0e

i(qx−ωt)∑
kσ,k′σ′ c∗kσck′,σ′ .

where λ is the deformation potential, the longitudinal sound wave is represented
by displacement u0e

i(qx−ωt), and the electron-acoustic wave coupling is propor-
tional to ∇u ∼ q. The coupling is provided by electromagnetic fields created by
the moving ions, as well as shifted electronic levels created by the deformed ion
lattice.

Nuclear spin relaxation is a contact interaction between the nuclear spins
and electron gas,
Hnuc
pert ∼

−→
I · −→σ δ(−→r −−→rN ),

where
−→
I is the nuclear spin, −→σ is the electron spin, and −→rN is the location of

the nucleus.

The electromagnetic interaction has a perturbing Hamiltonian of the form,
Hem
pert ∼ e

2m

(−→p · −→A +
−→
A · −→p

)
,

where
−→
A is the vector potential of the electromagnetic wave.

0.4 Time-reversed States
Note that we will eventually evaluate the scattering rate, or absorption rate α,
caused by a perturbation. This will involve summing over matrix elements of
the form, α ∼

∑
kf ,σf

∑
ki,σi

~ω 2π
~ |〈kf , σf |Hpert |ki, σi〉|2.

The grouping of terms in this sum can be important in the superconducting
state. Time-reversed electronic states add coherently in the sums on k and σ
in the absorption calculation. (P. W. Anderson showed that pairing of time-
reversed states is a more general version of the Cooper pairing that we have
considered up to this point. See the paper P. W. Anderson, J. Phys. Chem
Solids 11, 26 (1959) posted on the class web site)
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For example, terms of the form c+k′,↑ck,↑ and c
+
−k,↓c−k′,↓ connect time-reversed

quasiparticle states, just in a different direction. Note that both terms refer to
the same momentum transfer ∆k = k′ − k and same spin change ∆σ = σ′ − σ
for the quasiparticles. Note that reversing the direction of time changes k to
−k and ↑ to ↓. (Check out the table labeled “Effect of time reversal on some
variables of classical physics” at http://en.wikipedia.org/wiki/T-symmetry).

Writing out the products of c-operators in terms of the γ operators yields,
c+k′,↑ck,↑ = uk′u

∗
kγ
∗
k′0γk0 − v∗k′vkγ∗k1γk′1 + uk′vkγ

∗
k′0γ

∗
k1 + v∗k′u

∗
kγk′1γk0, and

c+−k,↓c−k′,↓ = −vkvk′γ∗k′0γk0 + uku
∗
k′γ
∗
k1γk′1 + ukvk′γ

∗
k′0γ

∗
k1 + v∗ku

∗
k′γk′1γk0.

Note that each of the four terms has the same γ operators for both products of
c-operators, they differ only in the prefactors. Such terms must be added first
before squaring to calculate a transition rate.

The scattering amplitude connecting these time-reversed states will either
be even or odd,
Bk′σ′,kσ = ±B−k−σ,−k′−σ′

Note that both terms refer to the same momentum transfer ∆k = k′ − k and
same spin change ∆σ = σ′ − σ for the quasiparticles. It is simply a question of
whether or not the perturbing Hamiltonian is even under time-reversal (+) or
odd (-).

The collected terms in the perturbing Hamiltonian are of the form,
Bk′σ′,kσ

{
(uk′uk ∓ vk′vk)

(
γ∗k′σ′γkσ ±Θσσ′γ∗−k−σγ−k′−σ′

)
+ (vkuk′ ± ukvk′)

(
γ∗k′σ′γ∗−k−σ ±Θσσ′γ−k′−σ′γkσ

)}
where the Θ function accounts for spin-flip perturbations,

Θσσ′ =

{
+1 σ = σ′

−1 σ = −σ′ , where the second case is for a spin-flip.

Note that the signs ± and ∓ refer to perturbations that are either even (top)
or odd (bottom) under time-reversal.

The first two products of γ operators correspond to quasiparticle scattering,
and the prefactor is called the scattering coherence factor,
CFS = (uk′uk ∓ vk′vk).
The second set of γ operators correspond to quasiparticle pair creation and an-
nihilation. These are multiplied by the pair creation coherence factor,
CFPC = (vkuk′ ± ukvk′).
Note that the signs flip for scattering vs. creation.

0.5 Absorption Rate
The transition rate associated with the perturbation is given by Fermi’s golden
rule for Fermionic particles:
Wi→f = 2π

~ |〈kf , σf |Hpert |ki, σi〉|2 {f(Ei)(1− f(Ef ))− f(Ef )(1− f(Ei))} δ(Ef−
Ei − ~ω).
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The absorption rate is the sum over all initial and final states of the energy
absorbed by the transitions;
α = 1

(2π)6

∑
kf ,σf

∑
ki,σi

~ωWi→f .
Converting to an integral on energy brings in the density of states,
α(ω) =

∫
|〈Hpert〉|2× Coherence Factors×Ns(E)Ns(E+~ω) [f(E)− f(E + ~ω)] dE.

After some algebra, the coherence factors essentially reduce to
Scattering: (uk′uk ∓ vk′vk)

2
= 1

2

(
1∓ ∆2

EE′

)
, where E′ = E + ~ω, and

Creation: (vkuk′ ± ukvk′)2
= 1

2

(
1± ∆2

EE′

)
. Once again notice the difference in

signs.

The coherence factors have the biggest influence when E ∼ E′ ∼ ∆, in which
case the factors are either 0 or 1. Also note that the density of states terms in
the α(ω) integral are largest near the gap edge (i.e. the same range of E). Hence
the “coherence effects” on absorption rates are quite strong, as we shall see below.

First consider the quasiparticle scattering term. The bare absorption rate
has matrix elements that are the same in the normal and superconducting states.
Hence it is simpler to compare absorption as a ratio,

αs

αn
= 1

~ω
∫ +∞
−∞
|E(E+~ω)∓∆2|(f(E)−f(E+~ω))
√
E2−∆2

√
(E+~ω)2−∆2

dE.

Note that the energy integral excludes the ranges |E|, |E + ~ω| < ∆ where the
density of states is zero.

It is pretty clear from the integrand that in the Type-I coherence case (upper
sign, perturbation even under time reversal), there is a near-zero when E ∼ ∆
in the integral. This coincides with the smallest magnitude of the denominator,
significantly reducung the value of the integral. In the type-II coherence case
(lower sign, perturbation odd under time-reversal), the numerator is doubled at
the point where the integral picks up it’s largest contribution, giving rise to a
strong enhancement of the absorption.

0.6 Ultrasonic Attenuation
The ultrasound waves create a time-reversal invariant (type I) perturbation.
The ultrasound waves are in the MHz range, whereas ∆/h is in the THz range.
Hence we have ~ω << ∆ and the energy factors in the αs/αn integral cancel to
good approximation, leaving, αs

αn
≈ 2f(∆) = 2

1+e∆(T )/kBT , a remarkably simple
result!
It turns out that the ultrasonic attenuation becomes a very good way to mea-
sure the temperature dependence and anisotropy of the gap!

The ultrasonic attenuation rate αs

αn
drops dramatically at Tc. (See the data

on the class web site.) In fact the rapid drop occurs with nearly infinite slope
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as the gap opens up. This is a classic example of type-I coherence effects.

The other two perturbations are type-II and involve operators that are odd
under time-reversal. They both show a stong enhancement of αs

αn
just below Tc,

with exponential suppression at low temperatures.

0.7 Nuclear Spin Relaxation
The peak in nuclear spin relaxation rate below Tc was an un-expected prediction
of BCS that was confirmed by Hebel and Slichter in Aluminum.

0.8 Electromagnetic Absorption
Type-II coherence effects cause an increase in electromagnetic abosrption (σ1)
below Tc, again an un-expected result. This “coherence peak” in σ1(T ) is seen
in BCS s-wave superconductors.

The absence of the Hebel-Slichter peak and a “coherence peak” in σ1(T ) in
the cuprates was an early sign that something different was going on there. In
fact, the d-wave gap (with excited states extending all the way down to the
Fermi energy), the strongly anisotropic nature of the gap ∆−→

k
, and the presence

of strong spin fluctuations (which serve to de-polarize the nuclear spins and are
probably responsible for the pairing interaction between the electrons), alter the
coherence factor calculation significantly.

Now consider the pair creation and annihilation coherence factor. Note that
the signs flip for cases I and II. Hence type-I pair creation effects are stronger
than the type-II kind. In type-II electromagnetic absorption vs. frequency
for ~ω ∼ 2∆, the absorption rate simply climbs from zero as the gap edge is
exceeded, very different from the coherence peak seen in quasiparticle scattering.
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